







# Three design options - Premises

- Low-slope: The design of an oversized culvert in a low risk site can be simplified and built with little risk
- Hydraulic: A structure with appropriate hydraulic conditions will allow target species to swim through it.
- Stream Simulation: A channel that simulates characteristics of the adjacent natural channel will present no more of a challenge to movement of organisms than the natural channel.





| Hydraulic<br>Method            | н                                 | igh Design Flo                   | w for Fish Passage                | ,                                                 |
|--------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------------------------|
| Design<br>Flows                | Species/Life Stage                |                                  | Percent Annual<br>Exceedance Flow | Percentage of<br>2-yr Recurrence<br>Interval Flow |
| 1.0005                         | Adult Anadromous Salme            | onids                            | 1%                                | 50%                                               |
|                                | Adult Non-Anadromous Salmonids    |                                  | 5%                                | 30%                                               |
| NOAA Fisheries SW              | Juvenile Salmonids                |                                  | 10%                               | 10%                                               |
| Region and CDFG                | Native Non-Salmonids              |                                  | 5%                                | 30%                                               |
| tish passage design tiows      | Non-Native Species                | Non-Native Species               |                                   | 10%                                               |
| Low Design                     | Flow for Fish Passage             |                                  |                                   |                                                   |
| Species/Lifestage              | Percent Annual<br>Exceedance Flow | Alternate<br>Minimum Fl<br>(cfs) | ow                                |                                                   |
| Adult Anadromous Salmonids     | 50%                               | 3                                |                                   |                                                   |
| Adult Non-Anadromous Salmonids | 90%                               | 2                                |                                   |                                                   |
| Juvenile Salmonids             | 95%                               | 1                                |                                   |                                                   |
| Native Non-Salmonids           | 90%                               | 1                                |                                   | 5                                                 |
| Non-Native Species             | 90%                               | 1                                |                                   |                                                   |



| Hydraulic                                | Method Allowa                                   | ble Velocitie                          |
|------------------------------------------|-------------------------------------------------|----------------------------------------|
| IOAA Fisheries SW<br>Ilowable velocities | Region and CDFG                                 |                                        |
| Culvert Len                              | gth vs Maximum Average V<br>for Adult Salmonids | Vater Velocity                         |
| Culvert Length<br>(ft)                   | Adult Non-Anadromous<br>Salmonids<br>(fps)      | Adult Anadromous<br>Salmonids<br>(fps) |
| <60                                      | 4                                               | 6                                      |
| 60-100                                   | 4                                               | 5                                      |
| 100-200                                  | 3                                               | 4                                      |
| 200-300                                  | 2                                               | 3                                      |
|                                          |                                                 |                                        |



| Fish Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | imming Speed                                                        | Summaries                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Relative Seriaming Aper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     | EVENING SPEEN OF ARCT AND ANDREAD THE<br>Relative Second of Second Theory The |
| Realmaid (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Milo Bell. Fisheries Ha<br>Requirements and Bio<br>Engineers, 1993. | andbook of Engineering<br>ological Criteria. US Army Corps of                 |
| Corp<br>Galifica (PP)<br>Subers<br>Col(13)<br>Col(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 species. Temp                                                    | erature, oxygen corrections                                                   |
| March 1         All and strategy and strategy in the strategy in the strategy and strategy in the strategy and strategy in the | Beamish, F.W. 1978. St<br>In Fish Physiology Vol 7                  | wimming Capacity. pp101-187.<br>7 Locomotion                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ed by W.S. Hoar and D                                               | .J. Randall, Academic Press Inc.                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70+ species. F                                                      | References cited.                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | These available throug                                              | h FishXing                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | http://www.stream                                                   | n.fs.fed.us/fishxing/                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | 7                                                                             |

|  |  |  | _ |
|--|--|--|---|





Hydraulic Design using Baffles and Fishways - Kozmo Bates

## Turbulence

- Measured by Energy Dissipation Factor (EDF)
- · Limits fish passage











### Energy Dissipation Factor (EDF)

- Energy dissipation factor
  - A measure of turbulenceEnergy dissipated per unit volume of water
  - Energy diss
    Culvert
- Recommended maximum EDF for adult salmon
  - Fishways and weirs: 4.0 ft-lb/sec/ft<sup>3</sup>
  - Baffled culverts: min: 3.0, max: 5.0 ft-lb/sec/ft<sup>3</sup> (estimated)
  - Roughened channels: 7.0 ft-lb/sec/ft<sup>3</sup> (estimated)
- Example: Find EDF in a 3.0% channel with Q=54cfs, A=20 sq ft 62.4 lb/ ft<sup>3</sup> x 54 cfs / 20 sq ft x 0.03 = 5 ft-lb/sec/ft<sup>3</sup>

#### Baffles for Fish Passage

#### Culvert Retrofit Improves Fish Passage

- Increase Hydraulic Roughness
   Reduces Velocity
  - Increases Depth

#### Two Hydraulic Regimes

- Plunging Weir Flow (Low Flow)
  - sharp crested weirs
  - turbulence dissipated in pool below baffle
- Streaming Flow (High Flow)hydraulic roughness
  - uniform turbulence



14









































| Empirical Equations for<br>Baffle Hydraulics at Streaming Flow |                                              |       |            |                |       |      |
|----------------------------------------------------------------|----------------------------------------------|-------|------------|----------------|-------|------|
| Angled Baffles (from Lang, 2008)                               |                                              |       |            |                |       |      |
|                                                                | Angled Baffle<br>Arrangement                 | L     | <b>Z</b> 1 | Z <sub>2</sub> | с     | А    |
| $\begin{bmatrix} & & \end{bmatrix}_{a}^{\frac{1}{a}}$          | Close-Spacing<br>Tall Baffle Height          | 0.50W | 0.132W     | 0.202W         | 0.122 | 1.85 |
| $Y_o = W \left[ \frac{Q}{C \sqrt{g S_o W^5}} \right]$          | Close-Spacing<br>Medium Baffle Height        | 0.50W | 0.092W     | 0.158W         | 0.123 | 1.70 |
|                                                                | Close-Spacing<br>Low Baffle Height           | 0.50W | 0.050W     | 0.112W         | 0.113 | 1.64 |
|                                                                | Intermediate-Spacing<br>Tall Baffle Height   | 0.75W | 0.132W     | 0.202W         | 0.139 | 1.82 |
|                                                                | Intermediate-Spacing<br>Medium Baffle Height | 0.75W | 0.092W     | 0.158W         | 0.125 | 1.82 |
|                                                                | Intermediate-Spacing<br>Low Baffle Height    | 0.75W | 0.050W     | 0.112W         | 0.119 | 1.68 |
|                                                                | Far-Spacing<br>Tall Baffle Height            | 1.00W | 0.132W     | 0.202W         | 0.169 | 1.79 |
|                                                                | Far-Spacing<br>Medium Baffle Height          | 1.00W | 0.092W     | 0.158W         | 0.166 | 1.73 |
|                                                                | Far-Spacing<br>Low Baffle Height             | 1.00W | 0.050W     | 0.112W         | 0.180 | 1.64 |















### Baffling Summary Thoughts

Wall baffles

- Retrofit only
- Debris snag
- Reduce capacity
- Turbulence blocks fish
- Allowable EDF varies; higher with diversity
- Turbulence needed to scour, maintain roughness
  - 0.2' drop per baffle
- Match normal depth to tailwater

Off-set baffles

32



#### Fishways

- Rigid permanent bed control
- Passage typically optimized for target species, not diverse
- Narrow flow range
- Minimum footprint
- Often high construction, operation, maintenance cost

















| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |































